On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras
نویسندگان
چکیده
The P, Z, and S properties of a linear transformation on a Euclidean Jordan algebra are generalizations of the corresponding properties of a square matrix on R. Motivated by the equivalence of P and S properties for a Z-matrix [2] and a similar result for Lyapunov and Stein transformations on the space of real symmetric matrices [6], [5], in this paper, we present two results supporting the conjecture that P and S properties are equivalent for a Z-transformation on a Euclidean Jordan algebra. We show that the conjecture holds for Lyapunov-like transformations and Z-transformations satisfying an additional condition.
منابع مشابه
On p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملAutomorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras
Generalizing the P-property of a matrix, Gowda et al. [Gowda, M. S., R. Sznajder, J. Tao. 2004. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393 203–232] recently introduced and studied Pand globally uniquely solvable (GUS)-properties for linear transformations defined on Euclidean Jordan algebras. In this paper, we study the invariance of thes...
متن کاملLeft derivable or Jordan left derivable mappings on Banach algebras
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
متن کاملLeft Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملOn the Uniform Nonsingularity Property for Linear Transformations on Euclidean Jordan Algebras
In a recent paper, Chua and Yi introduced the so-called uniform nonsingularity property for a nonlinear transformation on a Euclidean Jordan algebra and showed that it implies the global uniqueness property in the context of symmetric cone complementarity problems. In a related paper, Chua, Lin, and Yi raise the question of converse. In this paper, we show that, for linear transformations, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011